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ABSTRACT OF THE THESIS

Search for Hadronic Resonances in Multijet Final States
with the CDF Detector

by Claudia Seitz

Thesis Director: Prof. Eva Halkiadakis

This thesis describes a search for a new hadronic resonance in 3.2 fb−1 of data using

the Collider Detector at Fermilab. The Fermilab Tevatron accelerator collides beams

of protons and antiprotons at a center of mass energy of
√
s =1.96 TeV. A unique

approach is presented to extract multijet resonances from the large QCD background.

Although the search is model independent, a pair produced supersymmetric gluino

decaying through R-parity violation into three partons each is used to test our sensitivity

to new physics. We measure these partons as jets, and require a minimum of six jets in

an event. We make use of the kinematic features and correlations and use an ensemble of

jet combinations to distinguish signal from multijet QCD backgrounds. Our background

estimates also include all-hadronic tt̄ decays that have a signature similar to signal. We

observe no significant excess in an invariant mass range of 77 GeV/c2 to 240 GeV/c2

and place 95 % C.L. limits on σ(pp̄ → g̃g̃ → 3jets + 3jets) as a function of gluino

invariant mass.
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Chapter 1

Introduction

What is the world made of, where does mass come from? These and similar questions

have been fascinating humans for thousands of years. Piece by piece we developed

natural science to investigate these and many other questions. Today we live in a

century full of technological advancements that people two hundred years ago could not

have even imagined. Still there are many unsolved questions. With the invention of the

atomic model in the early 20th century we began to probe deeper into the fundamental

constituents of our universe. We saw phenomena that were not explainable by means

of classical theory. Quantum mechanics was born and only shortly after quantum field

theory came to life. Since then people have developed this theory that lead to the

most successful and precise model in physics, the Standard Model of particle physics.

Everything started with the antiparticle of the electron, the positron. Soon after new

particles were predicted by the theory and observed by experiments as well as new

phenomena were observed and included into the theory. The last big discovery happened

in 1995 at the Tevatron collider at Fermilab, when the top quark was found. Since then

many efforts have been made in theory and experiment to find new physics beyond

the Standard Model. Another crucial problem is the source of spontaneous symmetry

breaking which has not yet been resolved. There are many theories concerning this

issue and the most accepted one seems to be the so-called Higgs mechanism which

also predicts the existence of a Higgs boson. However, so far there is no experimental

evidence for this particle.

This thesis describes a search for new physics beyond the Standard Model. We

will focus mainly on multijet physics, which for a long time was an almost neglected

aspect of the Standard Model. The underlying theory of Quantum Chromo Dynamics
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is the least understood part of the Standard Model but new physics might be hidden

behind strong couplings. Chapter 2 focuses on the theory behind this search. We

are using data produced by the Tevatron hadron collider at a center of mass energy

of
√
s =1.96 TeV and collected by the Collider Detector at Fermilab (CDF). Chapter

3 describes the experimental setup. The backgrounds are large for multijet processes

at hadron colliders. We will present a unique approach to extract a 3-jet resonance.

This analysis technique is discussed in Chapter 4. Even though the presented search is

model independent we use a R-parity violating gluino process to set limits on its cross

section which is described in Chapter 5. Ideas to improve this technique and for further

investigation of possible new physics signals are briefly discussed in Appendix A.
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Chapter 2

Theoretical overview

2.1 The Standard Model

The Standard Model of particle physics can be considered one of the most successful

theories developed in the last century. It is a relativistic invariant quantum field theory

and describes the electromagnetic (QED), weak and strong (QCD) interactions between

elementary particles. The fourth fundamental force, gravity, is not included into the

Standard Model since the effects are negligible in the energy region we are able to access

with current experiments. By means of group theory it can be described as:

SU(3)× SU(2)× U(1), (2.1)

where SU(3) is an abstract representation for the strong force and SU(2) × U(1) de-

scribes the electroweak force. So far this theory has predicted experimental results

with an extremely high precision. However, there are still unanswered questions such

as how particles acquire mass. Another aspect of high energy physics is to find new

physics beyond the Standard Model. There are many different models which predict

new physics processes and one of them shall be discussed in Section. 2.3. Table 2.1 and

Figure 2.1 show the the constituents of the Standard Model.

2.1.1 Elementary Fermions

Elementary particles that build up all the visible matter in the universe can be divided

into two major categories, fermions and bosons. The most fundamental difference

between the two types is their spin. Fermions have half-integer spin and are for example

the constituents of protons and neutrons. Bosons on the other hand have integer spin
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and act as mediators of the three fundamental forces: electromagnetic, weak, and

strong.

Name Spin Baryon Lepton Charge Mass
Number B Number L Q [MeV]

leptons
electron 1

2 0 1 -1 0.511
electron neutrino 1

2 0 1 0 < 2.2 · 10−6

muon 1
2 0 1 -1 105.7

muon neutrino 1
2 0 1 0 < 0.17

tau 1
2 0 1 -1 1.77 ·103

tau neutrino 1
2 0 1 0 < 15.5

quarks
up 1

2
1
3 1 2

3 2.4
down 1

2
1
3 1 -1

3 4.8
charm 1

2
1
3 1 2

3 1.27 ·103

strange 1
2

1
3 1 -1

3 104
top 1

2
1
3 1 2

3 171.2 ·103

bottom 1
2

1
3 1 -1

3 4.2 ·103

gauge bosons
photon 1 0 0 0 0

W boson 1 0 0 ±1 80.4 ·103

Z boson 1 0 0 0 91.2 ·103

gluon 1 0 0 0 0

Table 2.1: Particles and their quantum numbers in the Standard Model Spin is defined
in units of h̄ and electrical charge in units of the elementary charge e. [1] and [2]

Leptons interact through the electroweak force, they are undisturbed by the strong

force. With spin 1
2 , leptons belong to the family of fermions. Each lepton is assigned

a Lepton number L=1 and for each anti-lepton L=-1. All observed decay processes

show a conservation of Lepton number. The second part of the fermion family are

quarks. The quark model was established by Murray Gell-Mann in the 1960s and

describes that all observed matter is made of smaller pieces which he called quarks [3].

Quarks are assigned a Baryon number B=1
3 and anti-quarks have B=-1

3 . Quarks can

not be observed as a single particle and they always confine together to build baryons

(3 quarks, B=±1) and mesons (2 quarks, B=0). Baryon number also seems to be a

conserved quantity and there is no experimental evidence for its violation. However,

the difference of Baryon and Lepton numbers, B-L, is always conserved.
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Figure 2.1: Standard Model of Particle Physics [2]

2.1.2 Elementary Bosons

The Standard Model has four different gauge bosons which act as mediators between

the elementary particles. All of these bosons have spin 1. The photon, γ, is the

massless mediator of the electromagnetic force. The weak force has three different

massive representatives, the charged W+, W− as well as the neutral Z0. The interaction

between quarks, the strong color force, is mediated by massless gluons.

2.1.3 Field theoretical description

The electromagnetic and weak interaction can be combined by starting with the free

particle Lagrangian:

L0 = iΨ̄γµ∂µΨ, (2.2)

where Ψ is the two dimensional Dirac Spinor. By replacing the covariant derivative ∂µ

with

Dµ = ∂µ + igWµ ·T + ig′
1
2BµY, (2.3)
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and adding kinetic energy terms for the gauge fields −1
4Wµν ·Wµν − 1

4Bµν · B
µν an

invariance under the combined gauge transformation SU(2) × U(1) can be achieved.

Equation 2.3 contains the two gauge fields Wµ and Bµ which contain photon, W± and

Z0 bosons. g and g′ are coupling constants for electromagnetic and weak interaction. T

is the the weak isospin operator that generates the SU(2) symmetry transformation and

Y represents the weak hypercharge [4]. This model does not give the full information

about the gauge bosons. We know experimentally that the carriers of the weak force are

massive, however, adding mass terms to the Lagrangian in equation 2.2 would destroy

the gauge invariance of the theory. Therefore, we need to find another mechanism to

give gauge bosons mass, the so-called Higgs mechanism.

2.1.4 Higgs Mechanism

Adding a scalar field in the form of an isospin doublet Φ = (Φ1,Φ2) to the Lagrangian

leads to a spontaneous symmetry breaking which creates massive gauge bosons. The

Higgs Lagrangian is described by equation 2.4:

LH = |DµΦ|2 − µ2Φ+Φ + λ(Φ+Φ)2. (2.4)

By choosing the parameters λ and µ accordingly one can create a non-vanishing vacuum

expectation value (vev) of |Φvev| =
√

1
2
µ2

λ [4]. The former massless fermions will couple

through a Yukawa coupling to the Higgs field and acquire mass in this process. The

Higgs boson has not been observed yet but a lower mass limit at 95 % C.L. of 114 GeV

was set by LEP (Large Electron Positron collider) at CERN [5]. The newest limits on

the Higgs mass from July 2010 from the Tevatron accelerator at Fermilab near Chicago

exclude a region of 158 GeV/c2 < mH < 175 GeV/c2 at a 95 % C.L. [6].
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2.2 Quantum Chromo Dynamics

In this analysis we are looking for new physics that involves strong coupling and there-

fore is described by Quantum Chromo Dynamics (QCD). Quarks and gluons are the

main participants in this sector of the Standard Model. The description of QCD is

mainly derived from QED. Instead of one type of electric charge the strong interaction

is described by three different color charges red (r), green (g) and blue (b), carried by

quarks, as well as their anti-colors (r̄, ḡ, b̄), carried by antiquarks. This leads to a more

complex structure than in QED [7]. The underlying symmetry group SUC(3) builds a

color octet and a color singlet, whereas only the color octet plays a role in QCD interac-

tions. Therefore, there are eight gluons carrying combinations of colors and anti-colors

shown in Table 2.2.

rb̄ rḡ bḡ br̄ gr̄ gb̄ 1√
2(rr̄ − bb̄) 1√

6(rr̄ + bb̄− 2gḡ)

Table 2.2: Color and anti-color charge combinations for gluons [8].

The mentioned color singlet is the colorless combination (r̄r + ḡg + b̄b) which stays

unchanged under rotation in the color space. This colorless state cannot function as

a gluon carrying color charge between quarks [1]. Because of the charge properties of

gluons they are able to interact among each other unlike photons in QED. Photons

carry no charge by themselves and therefore cannot interact with each other. Figure

2.2 shows gluon-quark and gluon-gluon interactions.

2.2.1 Quark Confinement

The fact that quarks cannot be observed as single particles in nature is due to the so-

called color confinement. Quarks undergo a hadronization process, described in more

detail in Section 2.2.2, where they build mesons (quark, antiquark) or baryons (three

quarks). To understand this process we need to look deeper into the nature of the

strong interaction. From the electromagnetic interaction it is known that the electric

potential decreases as ≈ 1
r , r being the radial distance from the electric charge. This

leads to the fact that electrons for example can exist separately without being confined

in a bound state. In QCD, however, the strong interaction can be described by an
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Figure 2.2: Interactions in QCD
Top: gluon emission, gluon absorption, Bottom: gluon-gluon interaction

empirical potential of the form [8]:

V = −4
3
αs
r

+ kr, (2.5)

where αs is the strong coupling constant and r describes the radial distance to the color

charge. For short distances we assume a Coulomb like potential which is overlapped

by a linear function that increases indefinitely at longer distances. The form of this

potential was experimentally tested and seems to represent the interaction well. Even

though we denote αs as the coupling constant, it is actually not constant. αs is a

so-called running coupling constant which is a function of momentum transfer (q2) and

the masses of the particles involved in the process. A discussion of running coupling

constants in QCD and QED can be found in [1]. However, this strong coupling constant

shows a somewhat special behavior. It decreases for high momentum transfers (large

q2) thus for small distance it can be described perturbatively in this regime. For small

q2 (thus for large distances) it increases indefinitely.
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2.2.2 Hadronization

As mentioned before, quarks cannot exist as single particles and therefore they undergo

the process of hadronization. A full description of this process can be found in Ref-

erence [9]. Figure 2.3 shows the way of building hadrons after a hard collision. The

produced partons undergo the so-called parton shower, which can be approximately

calculated by means of perturbative QCD. After this point the distance between the

Figure 2.3: Hadronization Model
From the hard collision to final state hadrons.

partons increases (momentum transfer decreases) which leads to an increase in the cou-

pling constant αs. This is a regime where the perturbative treatment starts to break

down and a phenomenological model needs to be established. An illustration of this

process can be seen in Figure 2.3. Two basic models are in use at the moment; the

Cluster model and the String model (both follow the description in [10]). Figures 2.4

and 2.5 show illustrations for each model which are explained below.

• Cluster Model: After the parton shower, gluons are split into color-singlets

qq̄ which combine with other color-singlets into colorless clusters. These clusters
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decay afterwards into the known hadrons. This model has few parameters. It

has a natural mechanism to generate transverse momenta and the production of

heavy particles is suppressed. An illustration can be seen in Figure 2.4

• String Model: This model is described by a color flux between the initial color-

singlets qq̄. When the partons move further away from each other the string

gets stretched. Due to the strong color field it breaks up via quark-antiquark

production until the energy in the string reaches a certain threshold. After that

the remaining parts build the known hadrons. An illustration can be seen in

Figure 2.5.

Figure 2.4: Cluster hadronization model

2.3 Issues with the Standard Model and SUSY

Even though the existing Standard Model gives precise predictions for experimental

measurements there are still unsolved problems such as including gravity, understanding

the mass hierarchy for fermions or explaining dark matter [11]. Several different models

have been developed and one of them, the Minimal Supersymmetric Standard Model

(MSSM), is explained in this section. Supersymmetry (SUSY) imposes a fundamental
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Figure 2.5: String hadronization model

symmetry between fermions and bosons. A supersymmetric operator Q can act on

fermions as well as bosons.

Q|fermion> = |boson> Q|boson> = |fermion>.

This implies that every Standard Model fermion (boson) has a corresponding bosonic

(fermionic) superpartner. The standard notation is for bosonic superpartners to begin

with the letter ”s-” while fermionic superpartners end on the syllable ”-ino”. Supersym-

metric particles are referred to as sparticles. The operator Q satisfies the algebra:

[Q,Q†] = Pµ, (2.6)

[Q,Q] = [Q†, Q†] = 0, (2.7)

[Pµ, Q] = [Pµ, Q†] = 0, (2.8)

where Pµ is the four-momentum generator. A single-particle state of a supersymmetric

theory is called supermultiplet and consists of fermions and bosons. Particles in the

same supermultiplet must have the same electric charge, weak isospin and color degree of

freedom. This is due to the the fact the generators [Q,Q†] commute with the generators

of gauge transformations [12].
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2.3.1 Minimal Supersymmetric Standard Model

There are many ways to introduce a supersymmetry into a theory, for example the

Minimal Supersymmetric Standard Model (MSSM). The description in this section

follows mainly Reference [12]. Since no sparticles have been observed, supersymmetry

has to be a broken symmetry. It is desirable to start with a Lagrangian that preserves

exact supersymmetry and introduce a spontaneous symmetry breaking . This is similar

to the electroweak symmetry breaking introduced in the Standard Model.

The superpotential for a MSSM is given by:

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd, (2.9)

where Hu, Hd, Q, L, ū, d̄, ē are chiral supermultiplets which can be seen in Table 2.3.

yd,yu,ye are dimensionless Yukawa couplings in the form of 3× 3 matrices. The last

term in equation 2.9 represents the supersymmetric Higgs boson.

names spin 0 spin 1
2 SU(3), SU(2), U(1)

squarks, quarks Q (ũL d̃L) (uL dL) (3,2, 1
6)

(× 3 families) ū ũ∗R u†R (3̄,1,-2
3)

d̄ d̃∗R d†R (3̄,1,1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) (1,2, -1
2)

(× 3 families) ē ẽ∗R e†R (1,1,1)
Higgs, higgsinos Hu (H+

u H0
u) (H̃+

u H̃0
u) (1,2,+1

2)
Hd (H0

d H
−
d ) (H̃0

d H̃
−
d ) (1,2,-1

2)

Table 2.3: Chiral supermultiplets in the Minimal Supersymmetric Standard Model [12].

Further discussions of supersymmetric models can be found in References [13] and

[12].

2.3.2 R-Parity

There are additional terms other than the ones shown in equation 2.9 that are gauge-

invariant but would violate Lepton and Baryon number conservation. These violations

have not been observed experimentally. Rather than postulating a conservation of
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Baryon and Lepton number in the MSSM a new symmetry is included into the super-

symmetric theory which is called R-parity. R-parity is defined as:

PR = (−1)(3B−L+2s), (2.10)

where B is Baryon number, L is Lepton number and s stands for the spin. All Standard

Model particles as well as the Higgs boson have even parity PR=1. On the other hand,

all supersymmetric particles (sleptons, squarks, gauginos, higgsinos) have odd parity

PR=-1. If R-parity is exactly conserved, then there is no mixing between particles and

the sparticles. This has three interesting consequences:

• The lightest supersymmetric particle (LSP) with PR=-1 must be absolutely stable.

The LSP can be a good candidate for dark matter.

• Each heavier state must have at least one LSP in the final decay state.

• Supersymmetric particles can only be produced in pairs.

2.3.3 Particles in the MSSM

This section will briefly describe some of the new particles that are introduced in the

MSSM [12].

• Neutralinos and Charginos: Because of electroweak symmetry breaking in the

MSSM Lagrangian the neutral Higgsinos (H̃0
u, H̃0

d) and the neutral gauginos (B̃,

W̃ 0) build four different neutral combinations called neutralinos. The charged

Higgsinos (H̃+
u , H̃−d ) and the charged winos (W̃−, W̃+) also combine into four

states with charge ±1 called chargino. In this mass hierarchy the neutralino is a

good candidate for the Lightest Supersymmetric Particle (LSP).

• Gluinos: Gluinos build a Majorana fermion color octet similar to their bosonic

Standard Model partner the gluon. Gluinos cannot mix with other MSSM parti-

cles, even if R-Parity is violated. In most models the gluino is considered to be

much heavier than charginos or neutralinos.
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• Squarks and Sleptons: The superpartners of quarks and leptons are all bosonic

in nature. This allows particles that are in the same state, which is represented

by having the same quantum numbers, to mix with each other. However most of

the mixing angles are considered to be very small.

Depending on the chosen model parameters there are several decay channels for the

different particles. For this analysis we are mainly interested in multijet final states.

This experimental signature, known as well as new physics processes is described in

Section 2.4.

2.3.4 R-parity violation

In the previous discussion of the Minimal Supersymmetric Standard Model the assump-

tion was made that R-parity is a conserved quantity. However, since no sparticle has

been observed, R-parity violation (RPV) cannot be excluded.

A violation of R-parity leads to three major differences to the model described above

[14].

• Single production of supersymmetric particles is possible.

• The LSP is not necessarily stable. Therefore, it can decay further into normal

matter, for example.

• Lepton or Baryon number is violated.

These new properties make it possible to search for supersymmetric signals that

decay exclusively into Standard Model particles. We test a model of the production

of R-parity violating gluinos decaying into three partons which is described in Section

2.4.2.
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2.4 Multijet Signals

The analysis presented in this thesis is a model independent search for a pair produced

new hadronic resonance decaying into three partons. These partons can’t be observed

as single particles and form jets. A jet is the product of the hadronization process of

the outgoing partons and is mainly identified by its energy deposition in the calorimeter

of the detector. Jets are described in more detail in Section 4.1.1. One of the main

requirements is that the final state consists of at least 6 jets. All multijet physics suffers

from large QCD backgrounds due to the much larger cross sections of these processes.

To test the analysis technique we use known Standard Model decays as well as a model

for new physics that results in multijet final states. We discuss the top quark decay as

a Standard Model particle which has a decay channel that is similar to the signature we

are looking for. The all-hadronic top quark decay is used to test the analysis technique

and its contribution is included into our background model.

Most jets originated by QCD events are gluon jets, whereas jets originated from

a real resonance are quark jets. QCD final states with high jet multiplicity are theo-

retically very difficult to calculate. In this analysis we present a technique to extract

a multijet resonance from the QCD background by using a data driven background

procedure.

2.4.1 Top Quark

The top quark was discovered in 1995 simultaneously by the CDF and D/O collaborations

at the Tevatron. It was theoretically predicted to complement the isospin doublet of

the bottom quark. With a mass of 172.4 GeV/c2 it is the heaviest observed particle.

The top has an extremely short lifetime of only τ = 10−25s which allows us to study

its properties before it undergoes the process of hadronization. At the Tevatron it

is produced as tt̄ by quark-antiquark annihilation with a probability referred to as

branching ratio BR=85% and gluon fusion BR=15% [15]. It decays weakly almost

exclusively into a W boson and a b quark.
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The three different decay channels of a tt̄ pair are:

• Leptonic decay: (tt̄ → W+bW−b̄ → l̄νlbl
′ν̄l′ b̄ ) Both W bosons decay into

leptons and lepton-anti-neutrinos. The branching ratio for this decay is BR=10.3

%. The experimental signature is therefore two leptons, two jets and missing ET .

• Semi-Leptonic decay: (tt̄ → W+bW−b̄ → qq̄′bl′ν̄l′ b̄) In this case only one of

the W bosons decays leptonically while the other one decays into quarks. The

branching ratio is BR=43.5 %. The experimental signature is one lepton, four

jets and missing ET .

• All-hadronic decay: (tt̄→W+bW−b̄→ qq̄′bq′′q̄′′′b̄) The most common decay is

the all-hadronic channel, where both W bosons decay into quarks. The branching

ratio is BR=46.2 %. The final state can be seen in the detector as an event with

at least six jets.

Figure 2.6: tt̄ decay in the all-hadronic channel resulting in at least 6 jets



17

2.4.2 RPV Gluino

Even though we perform a model independent search for a new hadronic resonance, we

choose an R-parity violating supersymmetric scenario as a generic model of the signal.

We generate the signal as a gluino pair where each of the two particles decays into three

jets. The decay chain has an intermediate squark with a mass between 500 GeV/c2 and

700 GeV/c2 . The decay is shown in Figure 2.7. However, an intermediate resonance is

not required for this analysis, but might help to further distinguish between background

and signal.

Figure 2.7: Pair produced gluinos decaying into three jets each
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Chapter 3

The experimental apparatus

3.1 The Tevatron Complex

The Tevatron particle accelerator complex is located at Fermilab in Illinois, and pro-

duces high energy particle collisions. A diagram of the complex is shown in Figure 3.1.

The Tevatron collides protons (p) and antiprotons (p) at a center-of-mass energy of

1.96 TeV. We can divide the lifetime of the experiments into two ranges Run I (
√
s =

1.8 TeV) and Run II (
√
s = 1.96 TeV). Major changes took place between these two

periods and we use data from the latter in this thesis. By 2010 the collider produced 8

fb−1 of data which is limited by the number of p since their production is a challenging

process. The Tevatron is planned to run until 2011. The whole accelerator complex

can be divided up into different sections which will be described below.

3.1.1 Proton source

The protons are produced by using an ionized gas of hydrogen (H−) in a pre-accelerator

with a Cockcroft-Walton design [17]. An electric field of 750 keV is applied which

accelerates the ions. Then the particles are fed into a 400 MeV linear accelerator before

they finally reach an 8 GeV booster synchrotron. As the hydrogen ions are injected into

this synchrotron they pass a carbon foil where the two electrons are ripped away and

only the proton enters the booster. After reaching 8 GeV the protons are transferred

to the Main Injector.
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Figure 3.1: Tevatron Accelerator complex at Fermilab [16]

3.1.2 Main injector

The Main Injector is a synchrotron used for further acceleration as well as for antiproton

production. Protons coming from the booster are accelerated to an energy of 150 GeV

[18] before injecting them into the main collider. In order to produce antiprotons the

protons reach an energy of 120 GeV and are then guided into a fixed target experiment.

3.1.3 The Antiproton source

The main limiting factor for the luminosity and collision rate at the Tevatron is the

production of antiprotons. Antiprotons are produced with a 120 GeV proton beam

coming from the main injector and colliding into a nickel target. As a result of this

collision a shower of particles is produced which is collimated with a lithium lens. In

order to only keep the negatively charged particles a dipole magnet is used to select

them. The dipole magnet is pulsed to pick out antiprotons with an energy of 8 GeV.

This happens with an efficiency of 1 antiproton per 10000 protons [19]. This production

mechanism leads to a particle beam with a wide range of momentum. For efficient

collisions we need a small phase space volume and to achieve this the antiprotons need
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to be cooled. This happens partially already in the main injector as well as in the

accumulator, where the particles are stored before injecting them into the Tevatron.

Figure 3.1 also shows a part of the Tevatron which is called Recycler. Since it is difficult

and costly to produce antiprotons the main purpose of the Recycler is to store them

after they have been used in the Tevatron. The Recycler holds them at 8 GeV until the

next store of the collider.

3.1.4 The Tevatron

After producing enough protons and antiprotons they are accelerated in the Main In-

jector up to 150 GeV before they are fed into the Tevatron. The particle accelerator is a

2 km diameter synchrotron and consists of superconducting magnets with eight acceler-

ating cavities. In order to use the superconducting magnets the temperature is brought

down to 4 K [20]. It accelerates the protons and antiprotons from 150 GeV up to 980

GeV. The Tevatron works as a storage ring and only brings the beams together to col-

lide at the places where the main experiments are being conducted. These experiments

are namely D/O and CDF (Collider Detector at Fermilab). For this analysis we use

data from the CDF Run II detector which is described in the next section. Quadrupole

magnets are used to squeeze the beam when it reaches the area of the experiments in

order to obtain a higher luminosity. The instantaneous luminosity is described by

L = fNBNpNp

2π(σ2
p + σ2

p)
, (3.1)

and is a measure for the number of collisions that occur in a time interval per area in

cm2. The following variables are used in equation 3.1: NB is the number of bunches in

the beam, f is the frequency of bunch crossings, Np, Np describe the number of protons

and antiprotons and σp, σp describe the beamsize of the colliding beam in the transverse

plane [19].
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3.2 CDF - Collider Detector at Fermilab

CDF is one of the two multipurpose experiments located at the Tevatron accelerator

ring. We only use data from the Run II phase of the experiment therefore in the next

section only the upgraded version is described. An elevation view of half of the CDF Run

II detector is shown in Figure 3.2. The detector is centered around the beamline and the

closest part to the beamline is the tracking system which is necessary to reconstruct

the path of charged particles that are produced in the collision. A 1.4 T magnet

whose field points in the beam direction force particles to describe a helix structure

while they move through the tracking system. In order to measure the energy of the

particles as precisely as possible, a tower geometry was chosen for the electromagnetic

and hadronic calorimeters [21]. To measure the muons which are minimum ionizing

particles the outermost parts of the detector are drift chambers. The detector elements

are described in detail below.

Figure 3.2: Elevation view of half of the CDF Run II detector [22]
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3.2.1 Detector Coordinates

It is important to define a coordinate system that is suitable for the geometry of the

detector. A spherical coordinate system with (r,θ,φ) is used to describe a position within

the detector. The three variables can be defined in cartesian coordinates (equation 3.2

- 3.4):

r =
√
x2 + y2 + z2, (3.2)

θ = cos−1
(
z

r

)
, (3.3)

φ = tan−1
(
y

x

)
. (3.4)

At a center of mass energy of 1.96 TeV we have to consider relativistic invariant

coordinates which cannot be satisfied by the above mentioned ones. A boost along the

z axis might occur during the collision therefore we define the Lorentz invariant rapidity

as in in equation 3.5.

y = −1
2 log p+ pz

p− pz
. (3.5)

Equation 3.5 can be simplified to 3.6 the so-called pseudo rapidity if the mass of the

particle is either 0 or negligible.

η = − log tan θ2 (3.6)

Since particles might be boosted along the z axis in the detector the transverse plane

gives a framework for invariant variables. We can define transverse momentum pT and

transverse energy ET

pT = p sinθ, (3.7)

ET = E sinθ. (3.8)
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3.2.2 Tracking System

The tracking system is used to determine the trajectory of the charged particles. As

shown in Figure 3.3 the system contains two major parts; the silicon detector (Layer

00, Silicon Vertex Detector (SVX), Intermediate Silicon layers) and an open-cell drift

chamber (COT - Central Outer Tracker). This combination provides tracking out to

|η| < 2.

Figure 3.3: CDF Tracking System [23]

Since silicon is a semiconductor material it works well for detecting tracks of par-

ticles. When a charged particle moves through the material it produces electron-hole

pairs which can be measured as a current if a voltage is applied. The main hit infor-

mation comes from the SVX which is positioned at radii of 2.4 to 10.7 cm away from

the beamline. It is constructed of three barrels divided into 12 wedges in φ. Three

concentric detectors, made out of silicon, are placed outside the beamline. These de-

tectors cover an area of |η| <2. Because of the already mentioned magnetic field the

particles describe a helix path in the tracking system. When we go further away from

the beamline the silicon is replaced by an open-cell drift chamber called central outer

tracker (COT). The COT is filled with a mixture of 50% argon and 50% ethane. Eight
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superlayers of 310 cm length cells are placed at radii of 40 cm and 132 cm. Each su-

perlayer has 12 layers of sense wires. The eight superlayers can be divided further into

axial layers which are parallel to the beam axis in order to measure the particle track

in the transverse plane and so-called stereo layers. The stereo layers are positioned

at ±2◦ with respect to the beam axis to measure tracks in the z direction [24]. Over

30,000 read-out channels and a hit resolution of 180 µm make the reconstruction of

particle tracks possible. When charged particles cross the drift chamber they ionize

the gas. The free electrons drift to the wires when a potential is applied. The readout

electronics can now measure the charge of the signal.

3.2.3 Calorimeters

To measure the energies of the outgoing particles a system of electromagnetic and

hadronic calorimeters is used. The energy resolution in the calorimeter is a major

limitation in high energy particle physics. A good understanding of the interaction of

charged and neutral particles in matter is therefore crucial.

Electromagnetic Calorimeter

Electromagnetic calorimeters are usually made of a heavy material which causes the

charged particles to produce an electromagnetic shower due to bremsstrahlung and

pair production. At CDF the electromagnetic calorimeter is a sampling calorimeter

with alternating layers of lead and scintillator. When an electron enters the medium

it is deflected from its original path due to interactions with the atomic field in the

material, this causes the emission of bremsstrahlung. The cycle of bremsstrahlung pro-

ducing photons and photons producing e+e− pairs continues until the threshold energy

for pair production is reached. The radiation length (X0) is a characteristic length that

describes the energy loss of an electron beam in a material. It has a strong inverse

dependence on Z, the atomic number of the material, and gives the mean distance an

electron travels in a material until it looses all but 1
e of its energy [25]. With this method

the energy of the particle is measured by photomultipliers which translate the photons

produced into a signal which represents the total energy. The energy resolution for a
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particle passing through the electromagnetic calorimeter is given by:

σE
E

= a√
E
⊕ b⊕ c

E
, (3.9)

where ⊕ represents the addition in quadrature. The first term parametrized by a rep-

resents statistical fluctuation in the energy deposition. The second term b does not

depend on the energy and is due to detector effects. The last term c is due to electronic

noise in the readout channels [25].

Hadronic Calorimeter

To measure the energy of hadronic particles a hadronic calorimeter is used. At CDF the

hadronic calorimeter is built of alternating layers of iron and scintillator. An important

parameter in this case is the nuclear interaction length λ. Similar to electrons going

through an electromagnetic calorimeter, neutrons and pions, for example, interact with

the nuclei in the hadronic calorimeter through the strong force and cause an electro-

magnetic shower to develop in the calorimeter. The nuclear interaction length gives a

measure similar to the radiation length.

At CDF a tower based geometry is used and can be divided into a central barrel

calorimeter (|η| < 1) and the forward and end the plug calorimeter (1.1 < |η| < 3.64).

The central barrel calorimeter consists of the inner electromagnetic calorimeter (CEM)

and an outer hadronic calorimeter (CHA). To cover the region of 0.6 < |η| < 1.0

a so-called end-wall hadronic calorimeter (WHA) is installed. The plug electromag-

netic calorimeter (PEM) and the plug hadronic calorimeter (PHA) cover the region of

1.1 < |η| < 3.6.
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3.2.4 Muon detectors

The last and outermost part of the detector is the muon chamber. Muons are mini-

mum ionizing particles and therefore pass the tracking and calorimeter system almost

undisturbed. To prevent hadrons which passed all previous calorimeters from entering

the muon chamber a layer of steel is located between the two. The muon chamber is

divided into several parts the central muon detector (CMU), central muon extension

(CMX), central muon upgrade (CMP) and the intermediate muon detector (IMU). The

CMU contains 2304 single-wire drift chambers which are arranged in four concentric

radial layers and covers a range in the detector of |η| < 0.6. To reach the CMU the

muon needs a minimum pT of 1.4 GeV/c. The CMP is located directly after the CMU

in a radial direction and to reach this part of the muon chamber the pT threshold is

raised to 2.2 GeV/c. The total coverage of all four parts of the muon chambers is for

|η| < 2.0 [24].

3.2.5 Trigger System

At the Tevatron the time between two bunch crossings and therefore theoretically two

events is 392 ns, or a frequency of 2.5 MHz [19]. To store every single one of these events

would not just be a huge challenge for the electronics but also would not be useful for

analyses since only a fraction of the events are physically interesting. CDF uses a three

level trigger system which includes several hardware and software components [26].

• Level 1 is a hardware trigger that selects events based on calorimeter, tracking

and muon chamber information. It reduces an input rate of 1.7 MHz to an output

rate of roughly 20 kHz. At level 1 electrons and jets are defined as single-tower

energy depositions in the calorimeters.

• Level 2 is an asynchronous combination of hardware and software triggers. It

starts a simple event reconstruction adding more information to the events that

passed Level 1 and starts clustering energy depositions in the calorimeter. The

average processing time at level 2 is about 30 µs.
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• Level 3 is a offline software trigger. At this stage the complete event is recon-

structed. A loose set of selection cuts is applied to the event and the output

rate is brought down to 75 Hz. These events are recorded and saved for further

analysis.

Since CDF is a multipurpose detector which is looking for all kinds of interesting physics

processes the data can be divided into different datasets which followed different trigger

paths that are optimal for a particular analysis.

3.3 Datasets

We are using a dataset corresponding to the integrated luminosity of:∫
Ldt = 3.2fb−1. (3.10)

The trigger used in this analysis is the so-called TOP MULTIJET TRIGGER and was

originally invented to study the all-hadronic tt̄ decay. It requires at least 4 high pT jets

and a large
∑

4j ET [27]:

• Level 1: The trigger requires at least 4 distinct energy clusters in the electromag-

netic or hadronic calorimeters with a raw energy greater than 10 GeV.

• Level 2: At this level the energy threshold is raised to 15 GeV for the at least 4

jets. The sum ET of all jets has to be greater than 175 GeV.

• Level 3: After the full event reconstruction the 0.4 cone jets have to have ET >15

GeV.

A simulation for this trigger is available and is incorporated into our Monte Carlo

simulation following Reference [27]. Each event is weighted according to this trigger

simulation.

3.4 Monte Carlo

In order to test analysis techniques and optimize searches for signals, Monte Carlo

simulations are used. Monte Carlo generators such as PYTHIA [28] use the underlying
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MS g̃ Mg̃ Cross Section (pb) k-factor
50 GeV/c2 73.7 1922 1.74
80 GeV/c2 110.1 205.5 1.72
100 GeV/c2 133.5 38.9 1.66
130 GeV/c2 167.9 13.2 1.56
150 GeV/c2 190.3 6.6 1.52
180 GeV/c2 223.3 2.3 1.47
200 GeV/c2 245.0 1.2 1.45

Table 3.1: Information about signal MC gluino samples.

quantum field theory described by the Standard Model to simulate numerically what

happens during a collision of high energy protons and antiprotons. To include the

response of the detector to the produced signal other programs such as GEANT [29]

are used to model the passage of particles through the different parts of the detector.

We model the signal using pythia, generating pair produced gluino events with

hadronic RPV turned on (hadronic uds Matrix Element, which allows gluino decays to

light jets). To execute actual calculations PYTHIA chooses a specific renormalization

scheme which is necessary to cancel infinities arising in quantum field theory. This is

the so-called MS scheme and the MS mass is a parameter which can be translated

into the real physical observable mass [3]. PYTHIA is a leading order (LO) Monte

Carlo generator, to account for corrections to the cross sections and including next to

leading order (NLO) effects a multiplicative factor called the k-factor can be calculated.

The first column in Table 3.1 represents the MS mass, the second column represents

the real physical mass, the third column shows the cross section and the last column

represents the k-factor. To study the contribution of the tt̄ all-hadronic decay as a

background in our analysis we use PYTHIA and perform cross checks with ALPGEN

[30] and MC@NLO [31]. To estimate the QCD background we do not use Monte Carlo

simulations but choose a data driven background procedure instead.
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Chapter 4

Analysis

This analysis shows a model independent search for 3-jet hadronic resonances in 3.2 fb−1

of data at the CDF detector at Fermilab. In order to model new physics signatures, we

choose R-parity violating supersymmetric (RPV SUSY) gluinos produced in pairs and

decaying into three partons. We measure these partons as jets and use the kinematic

quantities and correlations. We create an ensemble of jet combinations which allows

us to extract signal from the multijet QCD background [32]. Since the all-hadronic

tt̄ decay channel has a signature similar to our signal we study this known Standard

Model process as well. The analysis is documented as an internal CDF note which can

be found in Reference [33]. It has been approved by the CDF collaboration and a public

note [34] as well as a website [35] have been released.

4.1 Event Reconstruction

4.1.1 Jets

The experimental reconstruction and theoretical understanding of jets are the foun-

dation of this analysis. Our current understanding of the hadronization process is

described in Section 2.2.2 and experimental reconstruction of jets is described in more

detail in the next few sections. The signature of a jet in a detector is a shower of

particles which is represented by clusters of energy in the electromagnetic and hadronic

calorimeters. Since a jet is a shower of different particles, a set of selection rules is

needed to define a jet itself, in other words a jet algorithm. There are different ap-

proaches to jet algorithms, such as cone and kT algorithms [36]. The one used at CDF

and for this analysis is a cone algorithm called JetClu [37] which is described in the
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following section.

JetClu Algorithm at CDF

• First a list of seed towers in the calorimeter with ET > 1 GeV is created where

the transverse energy is defined as:

ET = EEM sin θEM + EHAD sin θHAD (4.1)

with EM and HAD defining electromagnetic or hadronic calorimeter, respectively

[37].

• The list obtained in the first step is ordered by ET and a ”precluster” is built by

joining adjacent seed towers within a cone in η − φ space starting at the highest

ET seed.

• For each precluster the ET -weighted centroid is calculated and a cone of radius R is

drawn around it. This radius R is defined asR =
√

(ηtower − ηjet)2 + (φtower − φjet)2

where the coordinates (ηjet, φjet) are defined as the center of the jet [38]. Each

cluster consists of towers within R that have ET >100 MeV. Next an iterative

process begins where towers are added to the cluster and the new centroid is cal-

culated after each step. This is done until no new towers are added anymore or

the number of steps reached a predefined limit.

• Overlapping of two clusters might happen and if the overlap fraction is >75 %

the two clusters are merged.

• The final list of towers can be regarded as the jet.

For this analysis we use jets with a cone size of R=0.4.

At this stage there are no tracks associated with the jet. In order to reproduce the

original parton energy as close as possible several corrections need to be applied to the

raw jet energy.
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Jet energy corrections

To calibrate the energy of the jet to that of the original parton several corrections need

to be applied to the raw jet energy measured by the JetClu algorithm which shall be

described here briefly and can be seen in further detail in [38].

• η−dependent corrections: The response of the CDF detector is not uniform

over the entire η range. This non uniformity is due to the structure of the calorime-

ter at η=0, where two halves of the central calorimeter join, and η=1.1 where plug

and central calorimeter join. These cuts in η as well as different resolutions in the

plug and central calorimeters need to be corrected to ensure an η independent

energy reconstruction. A ”dijet-balancing method” which is described in more

detail in [38] is used for this correction.

• Absolute Scale: This is a correction that is derived from Monte Carlo simula-

tions of the detector response and can be parametrized as a function of pT . This

method relies on how well the jet is modeled by the simulations (particle multi-

plicity in the jet, pT distribution of the constituents). This correction makes the

jet energy independent of the CDF detector.

• Multiple Interactions: In each bunch crossing it is statistically unlikely to only

have one pp̄ collision and the probability depends mainly on the instantaneous

luminosity. Hadrons that are from another pp̄ collision inflate the measured jet

energy and therefore have to be subtracted. This correction is described as a

function of the number of vertices in an event.

• Out-of-cone Correction: The final goal of jet reconstruction is to measure the

energy of the original parton as a decay product of a resonance. Due to radiation

losses in the final state (FSR) or particles leaving the cone in the hadronization

process the measured jet energy might be smaller than the original parent parton.

The out-of-cone correction (OOC) is obtained from matching Monte Carlo parent

partons with reconstructed jets in the detector.

• Underlying Event: Beside the OOC another process called Underlying Event
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(UE) might cause the measured jet energy be too high compared to the original

parton due to initial state radiation (ISR). During a bunch crossing interaction

between partons that do not participate in the hard collision might occur. This as

well as ISR and FSR are called underlying event. The UE correction is obtained

from Monte Carlo.

• Test of jet corrections: Since some of the above mentioned corrections rely

on Monte Carlo a cross check with data is necessary to verify that all of them

work properly. The corrections are applied to γ − jet events where the photon

pT is measured in the CEM calorimeter with very high precision. Due to the

nature of these events the photon should always balance out the jet momentum
pγT
pjetT

= 1. Other useful events are Z-jet events where the Z decays into two leptons.

A requirement here is that the Z and the jet are back to back in the detector.

This channel suffers less from background than γ − jet events. Uncertainties in

the jet energy correction can influence the precision of the analysis and need to

be included as systematic uncertainties into the final results.

In our analysis all of the above mentioned corrections are applied to pT and ET of the

jets and we refer to these corrected values as L7, unless otherwise stated as raw energies

or momenta. Uncertainties in these corrections can affect the final result of the analysis

and are included as a systematic uncertainty.

4.1.2 Tracks

Tracks are a crucial part for the event reconstruction. They are needed in order to

define the primary vertex, identify leptons and are useful to reconstruct jets. The track

reconstruction algorithm starts with hits in the COT where it tries to find seeds [39].

Seeds consists of hits in 3 consecutive wires that can be extended to a segment. A

segment-linking algorithm connects the seeds in each segment throughout the super-

layers of the COT followed by a reconstruction through the silicon tracker. Finally the

track is completely reconstructed in r-φ plane and a z position for the track can be

defined.
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4.1.3 Primary Vertex

The primary vertex is the point where the actual collision of p and p̄ takes place. To

find this vertex CDF uses the ZVertexFinder algorithm [40]. To find the vertex it takes

an error weighted average position on the z axis as in equation:

z0 =
∑
i z

0
i /δ

2
i∑

i 1/δ2
i

, (4.2)

where z0
i is the position on the z axis for each reconstructed track, and δ2

i the error on

this position. The quality of a vertex is defined by hits in the silicon tracker and the

COT as shown in table 4.1. For this analysis we require between 1-4 quality 12 primary

vertices.

number of track quality flag
Si-tracks ≥ 3 1
Si-tracks ≥ 6 3

COT-tracks ≥ 1 4
COT-tracks ≥ 2 12
COT-tracks ≥ 4 28
COT-tracks ≥ 6 60

Table 4.1: Quality flag for primary vertex - [40]

4.1.4 Missing Transverse Energy

Compared to typical searches for new physics missing transverse energy does not play

an important role in our analysis. Missing transverse energy is defined as the vector

sum of all visible transverse energy in the detector:

6ET = −
∑
i

EiT n̂i = −
∑

~ET , (4.3)

where ET is defined in equation 4.1 and n̂i is the transverse unit vector that points from

the beamline to the calorimeter tower. Jet energy corrections and minimum ionizing

particles such as muons influence the measured amount of missing ET in an event. We

need to correct the raw missing ET for these effects. We assume an all-hadronic decay

of a pair produced particle should have intrinsically little missing ET . However, we are

still interested in the missing ET distribution as a variable to select events to reduce

the background. We require for our events to have 6ET < 50 GeV.



34

4.2 Event Selection

4.2.1 Analysis Strategy

We are looking for events with a high jet multiplicity and require at least six jets

in an event. Out of these six or more jets we use all possible combinations to build

triplets of jets, what we call an ensemble of jets. This leads to a minimum of 20

triplets per event. The challenge is to extract the real signal from these possibilities.

We calculate the invariant mass of each triplet Mjjj as well as the scalar sum of the

transverse momentum
∑
jjj |pT |. Then we plot both quantities against each other as

can be seen in figure 4.1. Using the distribution of Mjjj versus
∑
jjj |pT | ensures that

we reconstruct the correct combination of jets in some kinematic regime. The incorrect

(uncorrelated) triplets tend to have Mjjj ≈
∑
jjj |pT | whereas the correct (correlated)

triplets produce a horizontal branch in Figure 4.1 at approximately the invariant mass

of the signal that is not present for the background. In Monte Carlo the uncorrelated

triplets represent combinatorial confusion. In data the uncorrelated triplets include in

addition to combinatorial confusion mainly QCD background events.

Figure 4.1: Mjjj versus
∑
jjj |pT |

To extract events along this horizontal branch we select triplets with
∑
jjj |pT | −

Mjjj > offset. This offset is the intersection of the linear function in Figure 4.1 with the∑
jjj |pT | axis and depends on the particular mass we are interested in. This offset will

be referred to as the ”diagonal cut” which is optimized for each mass as described later



35

in Section 4.4. Scatter plots for data and different Monte Carlo samples can be seen

in figure 4.2. The Mjjj versus
∑
jjj |pT | distributions are shown after applying basic

selection criteria described Section 4.2.2 as well as advanced selection criteria described

in Section 4.2.3. After applying the diagonal cut we project the events onto the Mjjj

axis, examples for these final mass plots can be seen in Figure 4.3.

4.2.2 Basic Selection

After the event reconstruction described in Section 4.1 we apply a basic selection on the

reconstructed objects. Since we are searching for all-hadronic decays we require that

the missing ET in the event does not exceed 50 GeV. We require 1-4 quality 12 primary

vertices and at least 6 jets in an event. The pT threshold for the energetically lowest

jet in the event is set to 15 GeV/c. We require for each jet to be within a distance from

the middle of the detector of |z0| < 60 cm and finally the
∑
|pT | of the 6 highest jets

has to be greater than 250 GeV/c.

• missing ET < 50 GeV

• 1 ≤ Nvert ≤ 4 (quality 12 vertices)

• Njets ≥ 6

• jet |z0| < 60 cm

•
∑

6jet |pT | ≥ 250 GeV/c for the six highest pT jets in the event.

Examples of these distributions for data and tt̄ Monte Carlo can be seen in Figures 4.4

to 4.6.
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Figure 4.2: Mjjj versus
∑
jjj |pT | multiple entry scatter plots. First: data 3.2 fb−1,

Second: PYTHIA tt̄ m=172.5 GeV/c2, Third: PYTHIA RPV gluino m=133 GeV/c2,
Fourth: PYTHIA RPV gluino m=190 GeV/c2. All plots have basic and advanced
selection criteria applied. To reduce background we apply a loose diagonal cut selection
where at least one triplet in the event has to pass a diagonal cut of 100 GeV/c.
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Figure 4.3: These plots show the final mass plot for two different gluino masses and
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Figure 4.4: pT distribution for the top 8 jets in the data and PYTHIA tt̄ Monte Carlo.
The jets have L7 jet corrections applied.
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Figure 4.5: Distributions of missing ET , number of vertices, number of jets, and the
maximum |z0| of all jets in data and PYTHIA tt̄ Monte Carlo before cuts. We require
6ET ≤ 50 GeV, 1 ≤Nvert≤ 4, Njets ≥ 6, jet |z0| < 60 cm.
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Figure 4.6:
∑

6jet pT distribution in data and PYTHIA tt̄ Monte Carlo before and
after after basic and advanced selection and a diagonal cut of 100 GeV/c. We require∑

6jet pT ≥ 250 GeV/c for six highest pT jets. Before we apply our event selection, the
effect of the trigger turn-on can be seen.
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4.2.3 Advanced Selection

After we apply the above mentioned basic selection to our events we reach the stage

where we combine the jets into triplets. By looping over all jets in an event and building

every possible combination we obtain an ensemble of at least 20 triplets per event. The

number of combinations grows with the number of jets. To ensure that we are really

combining jets that come from the same interaction point, the hard scattering, we place

a selection on the z position of the jets within an event as well as in a triplet.

• The first step is to demand that all the jets are coming from the same z position.

We place a cutoff on zrms over all jets. To define zrms we first loop over all tracks

associated with the jet and require that ∆Rtrack-jet < 0.4.

• Next we define the mean z̄j position of a jet (obtained from all tracks within the

0.4 cone of the jet) as:

z̄j =

∑
tracks

z0

Ntracks
. (4.4)

• The error on zj is defined as:

δ(zj) =

√√√√ z̄2
j − z̄j2

Ntracks
. (4.5)

• At this point, each jet that has track information will have the z information

above. Finally, we define zrms as:

zrms =

√√√√√√√√(
∑
jets

z̄j
2)/Njets −

∑
jets

z̄j/Njets

2

Njets
(4.6)

Before evaluating zrms we require that at least 4 of all the ≥ 6 jets in the event have

δ(zj) < 4. We select events with a zrms <0.5. Since jets are not necessarily associated

with tracks we allow one jet in the triplet to have no tracking information and therefore

no z information. Jets without any tracks are usually high η jets where only calorimeter

information is available.
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Figure 4.7: zrms distribution in data and PYTHIA tt̄ Monte Carlo before the zrms
cut.

For jets in a triplet, we tighten the requirement on the error of the mean z position to

δ(zj) < 2.5. Finally, we require that all jets in a triplet have |z̄j− zvtx| < 10 cm, where

zvtx is the z position of the first quality class 12 vertex. Triplets that pass all these

cuts are what we defined as ”good triplets”. Figure 4.7 shows the zrms distribution in

the data and tt̄ Monte Carlo.

4.3 Background

A multijet final state suffers from a large amount of QCD background. QCD processes

that occur in a hadron collider are described in Section 2.2. Estimating such a back-

ground from Monte Carlo is not only difficult to calculate but it is also impractical

to generate a large enough Monte Carlo sample using, for example, a generator such

as alpgen. Therefore, we need a data-driven background method and Section 4.3.1

describes the technique used in this analysis. The all-hadronic decay of tt̄ contributes

as a background to our gluino search and the Monte Carlo prediction is included in the

background estimate.
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4.3.1 Data-driven QCD Background estimate

Our technique for estimating the QCD background does not rely on Monte Carlo but

comes directly from data. However, we need to be cautious about fitting for a signal

and background in data at the same time, since statistical fluctuations can artificially

inflate the signal, while deflating the background. To get around these problems, we use

the (statistically independent) exclusive 5-jet data sample to parameterize the shape of

the QCD background in the ≥ 6-jet sample (for brevity referred to as 6-jet). However,

before fitting the 5-jet background we find that we need to scale the
∑
jjj |pt| of the

three jets (triplet) in the 5-jet sample to match the distribution in the 6-jet sample.

Both
∑
jjj |pt| distributions can be seen in Figure 4.8. To find the correct scale

factor, we take the ratio of 6-jet
∑
jjj |pt| distribution divided by the 5-jet distribution.

The scaling function can be seen in Figure 4.8. The weight function is a fit which is

adjusted to the kinematic range where most of the 6-jet events reside. We calculate a

scale factor for each triplet according to its triplet
∑
jjj |pt|. This scale factor is used

to weigh the 5-jet Mjjj distribution.

Although the statistics of the 5-jet sample is smaller, we use it to fit a Landau

distribution which seems to describe the shape of the background well. A Landau

distribution can be parametrized by three parameters: amplitude, most probable value

(MPV) and the width. It is implemented in the math Root library as a numerical

interpolation of the integral form described in equation 4.7:

p(x) = 1
2πi

∫ c+i∞

c−i∞
es log s+xsds. (4.7)

After fitting the Landau and stepping through diagonal cuts from 100 GeV/c to 200

GeV/c in 1 GeV/c steps we save the amplitude, MPV and width of the Landau function

for each diagonal cut. Examples for fits at different diagonal cuts (134 GeV/c, 155

GeV/c, 165 GeV/c) are shown in figure 4.9. We note that all three values can be

parametrized as a smooth function of diagonal cut. This is a convincing argument for

a smooth background shape. However, to obtain the real QCD background prediction

for the 6-jet sample we assume the Landau background shape that works well in the

5-jet sample also describes the background in the 6-jet sample. Since we expect a signal
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around the top mass of 172.5 GeV/c2 we blind the fit to this region. We use the 5-jet

MPV and width as input values for the fit in the 6-jet sample. We also obtain the

errors on 5-jet MPV and width and restrict the 6-jet parameters within this range. The

overall normalization is allowed to float which is necessary due to different statistics

in the two samples. From this new fit we save again the amplitude, MPV and width

and plot them versus diagonal cut. All three parameters as a function of diagonal cut

for 5-jet (black) and 6-jet (red) can be seen in figure 4.10. As can be seen all values

are parametrized as a smooth function of the diagonal cut in the 6-jet as well as in the

5-jet sample. The difference in the parameters is less than 2 GeV for both samples. We

therefore fix the background parametrization from this point to the fits in red in 4.10

when we fit for signal. The 6-jet data mass plots with QCD predictions coming from

this parametrization are shown in figure 4.11.

4.3.2 All-hadronic tt̄ decay

To estimate the contribution of the all-hadronic tt̄ decay in the mass region around 172

GeV/c2 we use Monte Carlo simulation. We incorporate a simulation of the trigger used

to select the data into our Monte Carlo sample. We find a diagonal cut of 190 GeV/c to

be the optimal one for the top mass, the procedure for optimizing the diagonal cut for

different masses is described in Section 4.4. We estimate the top signal that we expect

in 3.2 fb−1 of data to be a Gaussian signal including (0.8± 0.3) events and the error

includes statistical, theoretical uncertainties in the cross section as well as systematic

uncertainties described in Section 5.3.
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Figure 4.8:
∑
jjj |pT | distributions for 6-jet and 5-jet sample. The first figure above

shows the ≥ 6-jet
∑
jjj |pT | for the data. The second figure shows the

∑
jjj |pT | for the

5-jet data sample. Finally, the last figure shows the ratio of 5-jet and 6-jet and thus
provides a scaling factor for the 5-jet background. Note that the top plot showing the
6-jet sample peaks at low

∑
jjj |pT |. This is due to triplets that include the 6th, 7th or

8th jet. Triplets made from the 5-jet sample do not show this feature due to the 4jet
requirement of the trigger.
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Figure 4.9: 5-jet and 6-jet background. These plots show the 5-jet background shape
from the data for different diagonal cuts. The solid line is the fit to a Landau function.

4.4 Diagonal Cut Optimization

In this section we describe the method used to find the best diagonal cut for each gluino

mass. We first validate the technique by applying it to tt̄ in the all-hadronic channel

and find its optimal diagonal cut. Afterwards we repeat the procedure for our Monte

Carlo gluino samples.

4.4.1 Pseudoexperiments

We use a combination of the data-driven QCD background estimate and Monte Carlo

simulation to determine the optimal diagonal cut for each gluino mass. We have a

parametrization of the background shape for each diagonal cut shown in Figure 4.10.

For each set of parameters we create histograms replicating a Mjjj background only

mass distribution what we call pseudoexperiment. We obtain the signal shape and

expected number of events for each diagonal cut from a fit to the MC signal Mjjj
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Figure 4.10: Landau parameters for 5-jet and 6-jet background. Landau MPV (top),
width (middle) and amplitude (bottom) versus diagonal cut as extracted from the fits.
Fits to the scaled 5-jet (black) and 6-jet (red) data are shown. The results of these fits
are used in our QCD background estimates. We note that Landau MPV, width and
amplitude are fixed to the values given by the red curves when we fit 6-jet data for
signal. The difference between the red and the black curves for MPV and width give
us an indication of the systematic uncertainty in the background.
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diagonal cuts. The solid line is the QCD prediction obtained from the parametrization
in 4.10
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distribution. An example is shown in the top left plot in Figure 4.12 for a gluino with

a pole mass of 110 GeV/c2 for a diagonal cut of 145 GeV/c. The bold line is a fit of a

Landau function for the combinatorial background and a Gaussian for the signal. We

only count the events in the Gaussian function as signal events. To combine the data

QCD background shape and an expected signal we need to rescale the measured events

to a luminosity of 3.2 fb−1, the size of our dataset. Therefore we use:

Nevt = σ ·BR · Lint ·A, (4.8)

where σ is the cross section, BR stands for the branching ratio, Lint is the integrated

luminosity and A the acceptance. The acceptance for this study is obtained from the

integral of the fitted Gauss peak divided by the number of events generated. To not

just model number of events but also the shape of the signal we save the width and

mean of the Gaussian as well. Using the above mentioned functions for background

and signal shape we throw pseudoexperiments according to the sum of background and

signal functions. We fit each pseudoexperiment by using a two step fitting procedure.

First we blind the signal mass window and fit a Landau distribution for the background

shape. After this ”pre-fitting”, we save the values for MPV, amplitude and width of

the Landau as well as the errors of these values. For the final fit which includes a signal

Gaussian we allow the Landau shape to float between ±2σ of the errors from the pre-

fitting. Since the fitter is extremely sensitive to the initialized values and its limits this

pre-fitting should make the fitter well behaved. We define this as one pseudoexperiment

and repeat it 1000 times for each diagonal cut. An example for the procedure can be

seen in Figure 4.12.

4.4.2 Optimization

For each pseudoexperiment we obtain the number of signal events and the number of

background events. For the number of signal events we integrate the Gaussian in an

area of ±1σ. For the number of background events we integrate the Landau in the same

area as the Gaussian. We divide signal by background and save this fraction for each

pseudoexperiment and take the mean of 1000 pseudoexperiments. This procedure can
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Figure 4.12: Diagonal cut optimization for for a gluino mass of 110 GeV/c2. Top left:
Mjjj distribution for signal MC fitted to a Gaussian and Landau function. Top right:
The sum of the signal (Gaussian) and background (Landau) functions from which we
throw pseudoexperiments. Bottom left: An example pseudoexperiment. Bottom right:
The mean signal over background for 1000 pseudoexperiments vs. diagonal cut. For
this mass point, we find 145 GeV/c to be optimal.
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pole mass optimal
diagonal cut

73.7 114
110.1 145
133.5 180
167.9 185
190.3 195
223.3 205
225.0 195

Table 4.2: Table for diagonal cut optimization for different gluino pole masses from 74
GeV/c2 to 245 GeV/c2.

pole mass diagonal cut Nsig Ngen acceptance [10−5] Stat error[10−5]
73.73 110 9.9 294258 3.9 1.2
110.08 152 10.6 266587 3.9 1.2
133.46 180 68.2 908032 7.51 0.91
167.87 190 39.9 739046 5.40 0.26
190.25 192 41.2 813785 5.07 0.79
223.26 196 30.1 780543 3.86 0.71
244.95 199 30.2 751794 4.02 0.73

Table 4.3: Table of gluino acceptances

be repeated for each value of diagonal cut and for each of our gluino samples as well

as tt̄. Figure 4.13 shows the signal divided by background distribution for the different

gluino samples versus diagonal cut. The optimal diagonal cut that we choose for each

gluino mass can be seen in Table 4.2. The bottom right plot shows this optimization

for the top quark, which is optimal for a diagonal cut of 190 GeV/c.

Now that we have these numbers, we plot them versus the pole mass in Figure 4.14

and fit two linear functions to have an estimate for the diagonal cut between the mass

points. Table 4.2 summarizes the optimal value of the diagonal cut for different gluino

masses.

4.5 Acceptance

To finalize the analysis we obtain acceptances from the gluino Monte Carlo samples.

We include the trigger efficiency which is a simulation of the multijet trigger which is
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Figure 4.13: Gluino signal/background fraction as a function of diagonal cut. The plots
above show the gluino signal versus the diagonal cut for gluino masses from 74GeV/c2

to 245 GeV/c2 and the tt̄ MC sample.
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used for our dataset into the event selection as described in Reference [27]. To compare

with the mass point that our scan runs over we use the fit functions from Figure 4.14

and evaluate a diagonal cut for each mass. From the fit to the Mjjj distribution we

obtain the number of events that pass all the cuts. These are represented by the area

of ±1σ of the fitted signal Gaussian on top of a Landau function for the combinatorial

background. This number is divided by the number of events generated. Table 4.3

shows all the values for the different gluino masses. We find that to within statistical

uncertainties, the acceptance is constant as a function of gluino mass, as can be seen

in Figure 4.15. We parameterize it as a constant value of (4.96± 1.1)· 10−5 including

the statistical error.
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Chapter 5

Setting Limits on Hadronic Resonances

We do not observe an excess in the data and place limits on the cross section for

σ(pp̄ → g̃g̃ → 3jets + 3jets). The following chapter describes the statistical methods

used to set this limit as well as a description of systematic uncertainties. The cross

section as a function of gluino mass is presented at a 95 % confidence limit.

5.1 Bayesian approach for observed 95 % confidence limit calculation

In order to calculate the number of observed events at a 95% confidence limit we use

a bayesian approach. Therefore we need the background estimate, which is given by a

Landau function and the fixed parameters as described in Section 4.3. Since we model

these parameters as a function of diagonal cut we use the optimal cut for each mass

as described in Section 4.4. We scan through the mass range of 76.5 GeV/c2 to 238.5

GeV/c2, in steps of 9 GeV/c2 which corresponds to the middle of each bin. For each

mass point we fix the Landau background parameters according to the fit functions

from Section 4.3 and try to fit a Gaussian signal shape on top of that. We restrict the

Gaussian to have a width between 7 and 15 GeV/c2, since this is the typical width of a

resonance we would expect from the gluino Monte Carlo samples. The mass at which

we want to scan is fixed as well but the Gaussian amplitude is allowed to float without

restrictions. To calculate the limit we define the number of observed events as

ni = Si +Bi, (5.1)

where Si is given by the integral of ±1σ of the Gaussian fit in the ith bin. Bi is

the integral of the background Landau distribution in the same range of the ith bin.

Given this number of background events we calculate a 95% C.L. by using a Poisson
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Figure 5.1: On the left side is a fit of Landau background and Gauss signal. The right
plot shows the probability density function given 7.6 background and 11.1 signal events.

distribution

Pi(ni, µi) = µnii e
−ni

ni!
, (5.2)

where µi is the number of expected events in the ith bin. This value consists of

µi = Bi + n95. Figure 5.1 shows the procedure. We increase n95 slowly and fill a

histogram with the probabilities. After normalizing the distribution we integrate an

area of 95%. In Figure 5.1 the right plot shows a vertical line where we reach this limit.

The associated value on the x axis represents our 95% confidence limit. We choose a

different method using pseudoexperiments to calculate the number of expected events.

Table 5.1 summarizes the 95% upper C.L. on the observed events.

5.2 Expected 95 % confidence limit

In order to determine how likely it is that our background fluctuates and therefore

produces a signal we use pseudoexperiments. We use background pseudoexperiments

which are parameterized by a Landau function with parameters from Section 4.3. In

addition we include a Gaussian shape signal at m=172 GeV/c2 which consists of 0.8±0.3

events to account for the contribution of tt̄ events in the all-hadronic channel. A more

detailed description of the studies with tt̄ Monte Carlo and a comparison to data can

be seen in Appendix A. We throw 1000 pseudoexperiments with this shape and fit

afterwards with the fixed Landau distribution that we started with. In addition to this

Landau we try to fit a Gaussian on top of it to measure the background induced signal.
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Figure 5.2: Measured cross section distribution for 1000 pseudoexperiments at a mass
of 158 GeV/c2 without systematic uncertainties.

We save the number of events in a ±1σ range of this Gaussian and fill a histogram. After

the 1000 pseudoexperiments we find the value of signal events that corresponds to the 95

% limit. To obtain a cross section we divide this number by luminosity and acceptance.

An example of the cross section σ and the 95 % C.L. for a mass of 158 GeV/c2 can be

seen in figure 5.2. To obtain a statistical error band we add a Gaussian shape signal

with the cross section corresponding to the 95% C.L. (referred to as σ95%) on top of

our background parameterization and throw 1000 pseudoexperiments. In these 1000

pseudoexperiments we measure the input cross section and obtain a statistical error on

σ95% at 68% and 95% which correspond to ±1σ and ±2σ error band on the expected

95% C.L. limit.

5.3 Systematic uncertainties

We divide the systematic uncertainties into two broad categories: uncertainties in the

shape of the Mjjj distribution, background shape systematics, and uncertainties in the

acceptance of the signal.

5.3.1 Linearity check

We perform a cross check to ensure that our pseudoexperiments function properly.

Therefore we add a signal with a given cross section and a Gaussian shape on top

our Landau QCD background prediction. We now throw 1000 pseudoexperiments with
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mass Nbg Nsig 95% C.L.
76.5 1161.2 -58.9 41
85.5 601.2 -73.0 22.5
94.5 409.8 -40.4 23.5
103.5 185.7 6.8 35
112.5 93.3 13.5 34
121.5 54.7 10.3 27
130.5 23.7 3.7 14.3
139.5 12.2 -0.43 7.8
148.5 21.1 7.6 17.5
157.5 17.0 11.6 21.4
166.5 10.8 12.4 21.8
175.5 7.6 11.1 19.2
184.5 6.6 8.2 15.3
193.5 7.5 5.2 12.1
202.5 2.9 -0.9 3.7
211.5 2.4 -2.0 3
220.5 3.4 -0.7 4.4
229.5 1.7 0.6 5
238.5 1.3 0.06 4

Table 5.1: Number of observed events at 95 % C.L.
Table shows mass, fitted number of background events, number of observed signal events
and 95% C.L.



58

 [pb]inσinput 
0 50 100 150 200 250 300

 [p
b]

ou
t

σ
m

ea
su

re
d 

0

50

100

150

200

250

300

 for different massesinσ vs outσ

mass=130.5 GeV

mass=139.5 GeV

mass=148.5 GeV

mass=157.5 GeV

mass=166.5 GeV

mass=175.5 GeV

mass=184.5 GeV

mass=193.5 GeV

optimal linear function

mass=130.5 GeV

mass=139.5 GeV

mass=148.5 GeV

mass=157.5 GeV

mass=166.5 GeV

mass=175.5 GeV

mass=184.5 GeV

mass=193.5 GeV

optimal linear function

mass=130.5 GeV

mass=139.5 GeV

mass=148.5 GeV

mass=157.5 GeV

mass=166.5 GeV

mass=175.5 GeV

mass=184.5 GeV

mass=193.5 GeV

optimal linear function

Figure 5.3: Input cross section vs. measured cross section for varying masses.

this setup for different input cross sections and different mass points. We measure the

output cross section as a function of the input cross section which is shown in Figure

5.3. Each point represents the median of 1000 pseudoexperiments. We see a linear

dependence which is independent of the mass.

5.3.2 Background shape systematics

Even though we use a fixed parametrization for the QCD background shape this tech-

nique is not without an error. In Figure 4.10 we show the parameterization for the

background Landau function. We clearly see a small difference between the weighted

5-jet and 6-jet sample as well as error bars on the MPV and width of the Landau

function. In order to incorporate the uncertainties in our background estimate into the

final limit plot we add a randomness to Landau MPV, width and amplitude when we

throw pseudoexperiments. For each pseudoexperiment we pick values for MPV, width

and amplitude in a percentage range around the nominal value which is different for

each pseudoexperiment. Below a diagonal cut of 130 GeV/c this means a 1% range of

the amplitude and 5 % range in width and mean, above this diagonal cut we pick 1%

around the amplitude and 10% for width and mean. With this set of parameters we
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Figure 5.4: Cross section limit plot with background systematic. The error band is
obtained by using the described randomness in the Landau background parameters.
The acceptance systematic uncertainty is not applied.

produce 1000 different pseudoexperiments and we try to fit a Landau+Gaussian. For

the Landau fit we keep the parameters fixed to the original nominal values from figure

4.10 and only the Gaussian is allowed to float. The effect of adding this randomness to

the parameters can be seen in figure 5.4. As an example we show the effect when we

include a Gaussian signal corresponding to the 95% C.L. limit and measure the output

cross section with its statistical error band. It makes the cross section distribution

wider compared to pseudoexperiments thrown without randomness in the parameters.

This leads to an increase of the nominal 95% as well as a widening of the statistical

error band.
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Cross check: Overall shift of Landau parameters

We also perform a different study to see how an overall shifting of the background

parameters would affect the final limit plot. Figure 5.6 shows in yellow the mean

between 5jet and 6jet parameterization. We build errors symmetric around this value.

To study the influence of the parameterization further we repeat the pseudoexper-

iments as described in Section 5.2 by moving the parameterization within the errors

assigned in figure 5.6. When we move the parameterization ”up”, this refers to in-

creasing the amplitude by 1% and picking the upper errors for the mean and width.

This will make the distribution wider and moves the mean to a higher value. When we

move it ”down”, we decrease the amplitude by 1% and make the distribution narrower

as well as shift the mean to a lower value. We overlay the limit plots for the three

different parametrizations, up, down and nominal, which is shown in the figure 5.7 on

the left. As described before the up value increases the overall normalization as well as

the position of the background, therefore with a higher number of background events

the fitted signal is more likely to fluctuate up. Reducing the background therefore leads

a lower fitted signal. This behavior can be seen in figure 5.7 where we see a wider and

narrower ±2σ error band.
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Figure 5.5: Landau width with symmetric errors around the mean of 5jet and 6jet.
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Figure 5.6: Landau mean with symmetric errors around the mean of 5jet and 6jet.
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Figure 5.7: Cross section limit plot with over all shift in background parameters. The
acceptance systematic uncertainty is not applied.
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Figure 5.8: Comparison of more/less ISR/FSR. Left: ISR/FSR less, normal, more for
gluino m=133 GeV/c2. Right: ISR/FSR less, normal, more for gluino m=244 GeV/c2.

5.3.3 ISR/FSR

To estimate the effect of initial (ISR) and final state radiation (FSR) on our accep-

tance we generate two gluino samples with pole mass of m=133.1 GeV/c2 and m=244.5

GeV/c2, with more or less ISR/FSR. For an estimate for a mass point between these

two masses we use the tt̄ Monte Carlo sample with more/less ISR and FSR where the

effect in the tt̄ acceptance and therefore in the number of expected events can be seen

in table A.1. Figure 5.8 shows a comparison of the nominal gluino samples to the

ISR/FSR more or less samples. Since the shape of the signal itself does not change

much we estimate an overall error of 20% for this systematic by comparing number of

events that pass all cuts in a mass window around the pole mass.

5.3.4 Jet Energy Scale

The effect of the different Jet Energy Scales are described in Section 4.1.1. These

correction are not free of uncertainties. To account for these uncertainties we apply

a ±1σ JES shift to all of our gluino samples. This yields to the results summarized

in Table 5.2, which compares the up and down shift with the original acceptance as a

function of gluino mass [38]. We assign an overall error of 31 % for this systematic.
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pole mass JES +1σ [%] JES −1σ [%]
133.4 18.4 25.3
167.8 21.4 25.5
190.5 18.6 33.8
223.2 19.5 22.6
244.9 20.9 46.3

Table 5.2: Effect of the jet energy scale on gluino acceptance. Table shows pole mass
and percentage change in acceptance after applying a ±1σ JES

5.3.5 PDF

We use a special tool to evaluate the effect of varying Parton Distribution Functions

(PDF) on the RPV gluino acceptance. The utility reads in various sets of PDF’s and

calculates Q2 and x for each event, and determines an event-weight corresponding to

each PDF set. The PDF sets investigated are MRST75, as well as various CTEQ6 sets.

We compare these to the nominal (CTEQ5) PDF that was used to generate the events.

We find the largest difference in acceptance is between the CTEQ6M and CTEQ5 sets.

We find that the imposition of the diagonal cut causes the biggest PDF-related change

in acceptance. This is understandable, since the diagonal cut isolates high-boost final

states, which are most sensitive to changes in PDF. We find that the acceptance changes

from 4% for low-mass (100 GeV/c2), low diagonal cut samples, to 10% for high-mass

(200 GeV/c2), high diagonal cut samples. We assign an overall acceptance systematic

uncertainty of 10% due to PDF’s.

5.3.6 Luminosity

Another source for systematic uncertainties is the luminosity measurement. CDF uses

Cherenkov Luminosity Counters (CLC) to measure the luminosity of the Tevatron [41].

An overall uncertainty of 6% is assigned.
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Figure 5.9: black: without systematics, red: with systematics.

5.3.7 Summary of systematics

After applying all the above mentioned shifts separately and adding all the relative er-

rors in quadrature and obtain an overall uncertainty of 38 %. We include the acceptance

uncertainty into our pseudoexperiments. This has the same effect as the uncertainty in

the background shape it makes the cross section distribution wider and therefore the

95% C.L. gets shifted up. Figure 5.9 shows a comparison of the final cross section limit

without systematics (black) and with systematics (red). We include 0.8 ± 0.3 expected

top events into our background around a mass of 172.5 GeV/c2.
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Chapter 6

Results

We have presented a first search for a new hadronic resonance in 3.2 fb−1 of pp̄ collisions

at
√
s = 1.96 TeV using the CDF II detector. We find no significant excess in the

data beyond the known Standard Model processes. We introduced a new technique

to extract multijet resonances from QCD background. The presented jet ensemble

technique takes advantage of kinematic quantities and their correlations. By selecting

high
∑
|pT | objects we are also accessing an interesting region of phase space. The

search is model independent and could be performed for any pair produced hadronic

resonance decaying into three jets. We choose a R-parity violating pair produced gluino

as a possible new physics scenario and place a 95% C.L. upper limit in the production

cross section σ(pp̄→ g̃g̃ → 3jets+ 3jets) as a function of gluino mass. The systematic

uncertainties are incorporated into pseudoexperiments to determine an expected cross

section for mass points in a range of 76.5 GeV/c2 - 238.5 GeV/c2. Figure 6.1 shows the

95% C.L. upper limits of the expected (black) and observed (red points) cross section

on a linear as well as a logarithmic scale. The error band represent the ±1σ and ±2σ

statistical uncertainties. The top and the bottom plot in Figure 6.1 shows the limit plot

including a dashed line for the leading order theoretical cross section for pair produced

RPV gluinos calculated by PYTHIA multiplied by a k-factor to account for next to

leading order effects. We can exclude gluinos with a mass below 144 GeV/c2. Table

6.1 shows the values of mass and corresponding expected 95% C.L. limit as well as the

observed 95% C.L. limit. We note a 2σ excess around the top mass. Further studies

addressing this excess are described in Appendix A.
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Figure 6.1: The 95% C.L. upper limit on the expected (black) and observed (red points)
cross section. The bands represent ±1σ and ±2σ uncertainties on this limit. Top: linear
scale, Middle: logarithmic scale, Bottom: logarithmic scale. The top and bottom plot
include the leading order theory cross section multiplied by k-factor to account for next
to leading order effects represented by the dashed line.
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mass expected 95% C.L. limit. observed 95% C.L. limit.
GeV/c2 pb pb

76.5 1704 258.3
85.5 355.3 141.8
94.5 292.3 148.1
103.5 269.8 220.5
112.5 194.7 214.2
121.5 143.76 170.1
130.5 89.7 90.1
139.5 64.3 49.1
148.5 62.7 110.3
157.5 56.25 134.8
166.5 50.02 137.3
175.5 43.79 121.0
184.5 37.9 96.4
193.5 32.4 76.2
202.5 28.2 23.3
211.5 27.52 18.9
220.5 23 27.7
229.5 20.9 31.5
238.5 19.9 25.2

Table 6.1: Table shows expected 95 % C.L. limit as well as observed 95 % C.L. limit
for mass points between 76.5 GeV/c2 and 238.5 GeV/c2 in 9 GeV/c2 steps.
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Appendix A

Studies for the Top quark

We note that the limit plot in figure 6.1 shows a 2σ excess around the top mass. From

Monte Carlo prediction we only expect to see 0.8± 0.3 events in our used data sample

of 3.2 fb−1. When we fit a signal at a mass of 175 GeV/c2 we obtain 11±5 observed

events, including the error on the fit parameters. In this appendix we present ideas

to further distinguish possible signal from QCD background using jet ensembles. Most

example plots are shown as a Monte Carlo study. Performing the analysis in the other

decay channels of the top quark, in particular the semi-leptonic decay, could also be

considered. However, a full analysis of all the presented ideas would go to far for this

thesis and can be found in Reference [42].

A.1 Different Monte Carlo Samples

We study the influence of different Monte Carlo generators including next to leading

order effects as well as initial and final state radiation ISR/FSR. We use a diagonal cut

of 190 GeV/c for all MC samples and fit a Gaussian on top of a Landau function for

the combinatorial background and evaluate the Gaussian integral in a ±1σ range. The

expected events rescaled to 3.2 fb−1 for different MC samples can be seen in Table A.1.

These values do not include the multijet trigger simulation which reduces the number

of events by ≈ 60%.

A.2 Dalitz plots

A useful tool to distinguish between QCD background and signal are so-called Dalitz

plots. This analysis technique was first used by R.H. Dalitz in his paper in 1954 on the

τ meson (today K meson) decay into 3 pions. [43]. To define the Dalitz variables we
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Description Mtop Cross Section Expected Evt
pythia 172.5 7.5 1.80 ± 0.08 +0.12

−0.22
pythia 175 7 1.42 ± 0.07 +0.08

−0.18
pythia, High Luminosity 175 7 0.97 ± 0.15 +0.06

−0.12
pythia, ISR/FSR more 175 7 1.48 ± 0.13 +0.08

−0.19
pythia, ISR/FSR less 175 7 1.53 ± 0.13 +0.09

−0.20
pythia, MRST72 175 7 1.29 ± 0.16 +0.12

−0.26
pythia, MRST75 175 7 1.48 ± 0.17 +0.13

−0.28
pythia, ISR/FSR more 172.5 7.5 1.81 ± 0.12 +0.12

−0.22
pythia, ISR/FSR less 172.5 7.5 1.67 ± 0.12 +0.11

−0.20
alpgen+pythia 172.5 3.87, 1.21 1.57 ± 0.11 +0.10

−0.19
mc@nlo CTEQ5M 175 7 1.26 ± 0.18 +0.07

−0.17
mc@nlo MRST75 175 7 0.79 ± 0.16 +0.06

−0.12

Table A.1: Expected top events from different MC samples. These numbers do not
include the multijet trigger simulation which reduces them by ≈ 60%. The first error
represents the statistical uncertainty. The second error comes from the theoretical
uncertainty in the top cross section.

break each triplet into three dijet pairs with mass M12, M13, M23 where the number

refers to the jet in the triplet. We create normalized Dalitz variables:

Mij =
M2
ij

M2
ijk +M2

i +M2
j +M2

k

, (A.1)

with the condition i 6= j. We order them by size and obtain high, mid, and low Dalitz

variables which sum up to 1. The idea is to plot the different variables against each

other and overlay the three plots at the end. All kinematic features of the decay

are stored in these variables. To investigate the difference between signal region and

background region we divide the mass plot in an ”inside” (153 GeV/c2 < Mjjj < 189

GeV/c2) and ”outside” (Mjjj < 153 GeV/c2). Figure A.1 shows the three possible

combinations of plotting the Dalitz variables against each other inside the top mass

window for the PYTHIA tt̄ sample. Overlaying the three plots from Figure A.1 leads

to Figure A.2 which shows a comparison of tt̄ Monte Carlo inside and outside the

mass window. In Figure A.2 we can see the difference between the signal region and

combinatoric background. The vertical branch on the top left plot is due to the W

resonance in the top quark decay because of M2
W

M2
t
≈ 0.2. The region of uncorrelated

triplets (combinatorics) shows that the Dalitz variables are also uncorrelated. Figure
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A.3 shows the Dalitz plots for data. Due to the lack of statistics inside the mass

window it is difficult to identify the events as top. However, in the right plot (outside

the mass window) in Figure A.3 we see features that we expect from QCD events. QCD

events often have a dijet structure where two hard jets balance each other out and are

accompanied by softer jets. This leads to a population along the off-diagonal line in the

Dalitz plot which means that out of the three Dalitz variables high ≈mid. High and mid

are both larger than low (which will be most likely the two soft jets) therefore we also

expect a population along the y axis. Figure A.4 shows the three Dalitz variables from

tt̄ Monte Carlo and data separately in a one dimensional histogram. By demanding

that Dalitz low > 0.1 we are selecting mainly real tt̄ events and cut out most of the

background. However, to see how the effect of this selection we point to Reference [42]

where we use this study on an extended dataset.

A.3 Identifying the b quark: b-tagging

Most top quark analysis rely on the successful identification of the b quark in the

tt̄ decay. A technique called b-tagging is used to find the jets that originate from a

bottom quark. This is possible due to the special properties of the b quark which forms

b hadrons during the hadronization process. With a lifetime of roughly cτ=450 µm

these b hadrons are able to travel several centimeters inside the silicon tracker before

they decay. This is called a secondary vertex and is used to identify the bottom jet [44].

A.3.1 W boson

If we consider the all-hadronic top decay we know that the W decays into two jets.

The above mentioned b-tagging procedure can be used to identify the jet that most

likely does not come from the W. The invariant mass of the other two jets can now

be associated with the W. Figure A.5 shows this anti b-tagged dijet mass as a Monte

Carlo study done with a tt̄ sample. However, this technique relies heavily on a good

b-tag efficiency and a low fake rate.
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Figure A.1: The three combination of Dalitz variables in tt̄ Monte Carlo inside the mass
window. Left: high vs low, Middle: high vs mid, Right: mid vs low
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Figure A.2: Dalitz plots, all three combinations of variables overlaid for tt̄ Monte Carlo.
The vertical branch on the top left plot is due to the W resonance in the top quark
decay because of M2

W

M2
t
≈ 0.2. Left: inside the top mass window, Right: outside the top
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Figure A.3: Dalitz plots, all three combinations of variables overlaid for data. With
only 30 events inside the mass window it is difficult to identify the events as either
background or real top events. Left: inside the top mass window, Right: outside the
top mass window.
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Figure A.4: Dalitz variables Top: tt̄ Monte Carlo, Bottom: data. The histograms are
normalized and show inside (red) and outside (black) the top mass window.
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A.4 Semi-leptonic decay

Besides the all-hadronic top decay it is also possible to use the presented ensemble

method for the semi-leptonic decay. There a different trigger path is necessary which

chooses an isolated lepton, where isolated means that it has to be in a certain distance

to a jet. The event also need a fairly large amount of missing ET as well as four jets.

The requirement of the isolated lepton reduces the QCD background. A more detailed

study of this decay channel can be found in Reference [42]. We find that we can loosen

the diagonal cut requirement for this channel and therefore access a different kinematic

region. We clearly see a signal around the top mass and Monte Carlo prediction agrees

within statistical uncertainties with the number of observed top events.

A.5 Conclusion

We find that the jet ensemble technique works in the semi-leptonic channel. Further

analysis of the all-hadronic channel give rise to the conclusion that the 2σ excess around

the top mass seems to be top like.
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